High-Flying Summer Research in Austria

This video shot inside a Diamond DA42 shows Florida Tech’s Brian Kish, assistant professor of Mechanical Aerospace Engineering, (right) testing out a new “active stick” technology that warns a pilot of an aerodynamic stall. The research is part of an FAA grant to help curb small aircraft accidents due to loss of control.

Flight Test Engineering Program Investigates Safety Technology for Small Aircraft

“Loss of control” is the number one safety concern for small, general aviation aircraft, according to the Federal Aviation Administration, with a fatal crash averaging once every three days. But Florida Tech research could help improve these grim statistics by looking at warning and safety systems that could alert pilots to aerodynamic stall, where the main wing loses lift causing the nose to drop. As part of a $341,000 FAA grant,  Florida Tech’s Flight Test Engineering Team went to Austria this summer to assess the effectiveness of a new computer-regulated system for controlling the flight of a small aircraft.

Vehicles such as jets and passenger planes have automatic systems that prevent accidents due to pilot error, but most small airplanes still rely on the pilot to pull out of situations such as losing lift. But now, a few inexpensive “fly-by-wire” systems are being outfitted for light aircraft and tested.

Florida Tech teamed up with the Technical University of Munich, which owns and operates an aircraft with an “active stick.” The aircraft, a modified Diamond DA42, is maintained and flown out of Diamond Aircraft’s headquarters in Wiener Neustadt, south of Vienna. The active stick enables haptic feedback to the pilot by means of a change in stick force, a stick vibration, or a stick push, which automatically commands the aircraft’s elevator. In addition to haptic feedback, the team examined various audio and visual alert methods intended to get the pilot’s attention if the nose starts to drop.

The grant’s principal investigator, Brian Kish, assistant professor of Mechanical Aerospace Engineering and chair of the Flight Test Engineering program, said, “We flew 11 test flights in seven days and met 100 percent of the objectives. We were fortunate with weather, the aircraft, and the systems. Rarely to flight test programs run this smoothly.”

Kish’s research partners on the grant include Markus Wilde, assistant professor of Mechanical Aerospace Engineering and the co-PI for the project. Wilde used his connections to TUM (he earned his Masters and Doctorate degree there) to set up a partnership between Florida Tech and TUM’s Institute of Flight System Dynamics. Kish also recruited flying qualities expert Dave Mitchell of Mitchell Aeronautics Research and Florida Tech’s Ralph Kimberlin, who has flown 25 first flights of newly developed aircraft and has over 8,500 flight hours in over 250 different aircraft, as the team’s chief test pilot. Finally, Florida Tech Master’s student Jennifer Geehan led test preparation, data analysis and report writing.

Kimberlin flew the first five missions to test the active stick technology in the Diamond DA42. A senior fellow of the Society of Experimental Test Pilots, Kimberlin said, “The fly-by-wire DA-42 was the first and only aircraft in 54 years of flying airplanes where I had the opportunity to compare visual, aural, tactile and pusher stall warning systems at the same time, which I found to be enlightening.”

Geehan will use the data from this program for her thesis. Before arriving in Austria, she spent six weeks in Munich preparing for the program and two weeks in Wiener Neustadt for the flight campaign. She flew two missions in the DA-42 as the evaluation pilot.

“This opportunity was one of those phenomenal real-world experiences where I was immersed in an environment that combined academic, corporate and government personnel all working together on one project,” said Geehan, who will be the fifth Florida Tech student to earn a MS in Flight Test Engineering, “Getting hands-on learning experience of flying the test aircraft was significant to my growth as a student and future flight test engineer.”


Show More
Back to top button